Universidad San Sebastián  
 

Repositorio Institucional Universidad San Sebastián

Búsqueda avanzada

Descubre información por...

 

Título

Ver títulos
 

Autor

Ver autores
 

Tipo

Ver tipos
 

Materia

Ver materias

Buscar documentos por...




Mostrar el registro sencillo del ítem

dc.contributor.author Mohamed, Emad A.
dc.contributor.author Shawky, Ahmed
dc.contributor.author Almutairi, Sulaiman Z.
dc.contributor.author Aly, Mokhtar
dc.contributor.author Ahmed, Emad M.
dc.contributor.author Kandil, Tarek
dc.contributor.author Hassan, M. S.
dc.date.accessioned 2024-09-12T03:36:46Z
dc.date.available 2024-09-12T03:36:46Z
dc.date.issued 2023-12-15
dc.identifier.issn 2352-152X
dc.identifier.uri https://repositorio.uss.cl/handle/uss/11250
dc.description Publisher Copyright: © 2023 Elsevier Ltd
dc.description.abstract The susceptibility of modern interconnected microgrid (MG) systems to undesirable frequency oscillations represents a critical issue resulting from the intermittency properties of renewable energy generation systems (RESs). Thence, extensive efforts are needed for developing more robust frequency regulators. Maintaining required frequency regulation using load frequency controllers (LFCs) can play a vital role in modern interconnected multi-MG systems with high levels of RESs penetration. Moreover, wide concerns exist about taking advantage of installed electric vehicle (EV) battery energy storage devices in regulating the frequency of MG systems. Therefore, this paper proposes an improved optimal fractional order (FO) LFC technique for developing robust multi-MG systems. The proposed technique uses two cascaded control loops, wherein the one plus proportional double derivative with filter (1+PDDF) in the outer loop and FO proportional integral tilt (FOPIT) control technique. To avoid complex control design procedures and parameter tuning, the recent powerful artificial hummingbird optimizer algorithm (AHA) is proposed to simultaneously optimize proposed control parameters in various interconnected multi-MG systems. The AHA optimizer outputs optimal parameters of the proposed control to achieve the best system response and stability. The proposed 1+PDDF/FOPIT control scheme yields a high rejection rate of existing disturbances resulting from uncertainties in RESs and/or loads, which enhances frequency stability and robustly mitigates frequency oscillations. Several comparisons and evaluations are provided for the proposed 1+PDDF/FOPIT control scheme and AHA optimizer with featured existing schemes in literature to prove several superiority indices of system response. For instance, the integral squared error (ISE) comparison at step load scenario for the proposed 1+PDDF/FOPIT controller was 0.31%, 0.29%, 1.25%, and 4.12% of the obtained ISE values under the studied PIT, FOPIT, 1+PDDF, and 1+PIDF/FOPID LFC methods from literature, respectively. en
dc.language.iso eng
dc.relation.ispartof vol. 73 Issue: Pages:
dc.source Journal of Energy Storage
dc.title Optimal 1+PDDF/FOPIT frequency regulator for developing robust multi-microgrid systems with employing EV energy storage batteries en
dc.type /dk/atira/pure/researchoutput/researchoutputtypes/contributiontojournal/systematicreview
dc.identifier.doi 10.1016/j.est.2023.109088
dc.publisher.department Facultad de Ingeniería y Tecnología
dc.publisher.department Facultad de Ingeniería, Arquitectura y Diseño


Ficheros en el ítem

Ficheros Tamaño Formato Ver

No hay ficheros asociados a este ítem.

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem

Buscar


Listar

Mi cuenta