Universidad San Sebastián  
 

Repositorio Institucional Universidad San Sebastián

Búsqueda avanzada

Descubre información por...

 

Título

Ver títulos
 

Autor

Ver autores
 

Tipo

Ver tipos
 

Materia

Ver materias

Buscar documentos por...




Mostrar el registro sencillo del ítem

dc.contributor.author Annamdasu, Madhavi Latha
dc.contributor.author Challagulla, S. P.
dc.contributor.author Kontoni, Denise Penelope N.
dc.contributor.author Rex, J.
dc.contributor.author Jameel, Mohammed
dc.contributor.author Vicencio, Felipe
dc.date.accessioned 2024-09-12T03:40:54Z
dc.date.available 2024-09-12T03:40:54Z
dc.date.issued 2024-02
dc.identifier.issn 0267-7261
dc.identifier.uri https://repositorio.uss.cl/handle/uss/11517
dc.description Publisher Copyright: © 2023 Elsevier Ltd
dc.description.abstract The evaluation of the Floor Response Spectrum (FRS) holds paramount significance in assessing the seismic behavior of secondary structures. Precise FRS prediction empowers engineers to make informed decisions concerning structural design, retrofitting, and safety precautions. This study aims to scrutinize the impact of dynamic interaction between primary and secondary structures on FRS. Both the elastic primary structure (PS) and elastic secondary structure (SS) employ a single-degree-of-freedom (SDOF) system. Governing motion equations for both coupled (with dynamic interaction) and uncoupled (without dynamic interaction) systems are formulated and solved numerically. The study investigates how variations in the vibration period of PS (Tp), tuning ratio (Tr), mass ratio (μ), and damping ratio (ξs) of SS influence FRS. The FRS impact remains minimal at μ = 0.001 (0.1%); however, with increasing mass ratio, PS-SS dynamic interaction significantly affects SS's spectral acceleration response. Coupled analysis is crucial only for secondary structures tuned to the primary structure's vibration period (0.8≤Tr≤1.2). This study utilizes two-layer feed-forward Artificial Neural Networks (ANNs) for FRS prediction. The Levenberg-Marquardt (LM) backpropagation (BP) algorithm trains the network using a comprehensive dataset. In summary, it is evident that the ANNs, once trained, enable accurate prediction of the FRS, exhibiting a R2 of 99%. Additionally, a design expression is formulated utilizing the ANN model and subsequently compared with the existing formulation. en
dc.language.iso eng
dc.relation.ispartof vol. 177 Issue: Pages:
dc.source Soil Dynamics and Earthquake Engineering
dc.title Artificial neural network-based prediction model of elastic floor response spectra incorporating dynamic primary-secondary structure interaction en
dc.type Artículo
dc.identifier.doi 10.1016/j.soildyn.2023.108427
dc.publisher.department Facultad de Ingeniería y Tecnología
dc.publisher.department Facultad de Ingeniería, Arquitectura y Diseño


Ficheros en el ítem

Ficheros Tamaño Formato Ver

No hay ficheros asociados a este ítem.

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem

Buscar


Listar

Mi cuenta