Universidad San Sebastián  
 

Repositorio Institucional Universidad San Sebastián

Búsqueda avanzada

Descubre información por...

 

Título

Ver títulos
 

Autor

Ver autores
 

Tipo

Ver tipos
 

Materia

Ver materias

Buscar documentos por...




Mostrar el registro sencillo del ítem

dc.contributor.author Coelho, Pablo A.
dc.contributor.author Sandoval, Claudio
dc.contributor.author Alvarez, Jonnathan
dc.contributor.author Sanhueza, Ignacio
dc.contributor.author Godoy, Cristofher
dc.contributor.author Torres, Sergio
dc.contributor.author Toro, Carlos
dc.contributor.author Sbarbaro, Daniel
dc.date.accessioned 2024-09-26T00:28:23Z
dc.date.available 2024-09-26T00:28:23Z
dc.date.issued 2019
dc.identifier.issn 1474-6670
dc.identifier.uri https://repositorio.uss.cl/handle/uss/12276
dc.description Publisher Copyright: © 2019, IFAC (International Federation of Automatic Control) Hosting by Elsevier Ltd. All rights reserved.
dc.description.abstract The reflection of light on mineral samples have been widely used to obtain information concerning their composition. In particular, visible and near-infrared reflectance spectrum have offered an inexpensive way to obtain information about their mineralogical composition. In this work, near-infrared hyperspectral reflective images of several mineral samples are obtained and analyzed. The average reflective spectrum of Chalcopyrite (CuFeS2), Pyrite (FeS2), Chalcocite (Cu2S), Covellite (CuS), and Slag (FeO-SiO2) packed into pellets were obtained using a near-infrared hyperspectral camera. In order to analyze copper concentrates, a K-Nearest Neighbor classifier was trained to identify its main components. A 10 fold cross validation approach was used to certify the validity of the classifier. The trained classifier provided the mineralogical spatial distribution of the different components in a concentrate sample. An automatic system controlling all the acquisition and image processing stages provides analysis of the concentrate samples. Further work is underway to include additional minerals and to improve implementation issues such as signal filtering. This is the first step towards the design of a low cost system to provide relevant information about the concentrates feeding copper smelters. en
dc.language.iso eng
dc.relation.ispartof vol. 52 Issue: no. 14 Pages: 94-98
dc.source IFAC-PapersOnLine
dc.title Automatic near-infrared hyperspectral image analysis of copper concentrates en
dc.type Artículo de conferencia
dc.identifier.doi 10.1016/j.ifacol.2019.09.170
dc.publisher.department Facultad de Ingeniería, Arquitectura y Diseño


Ficheros en el ítem

Ficheros Tamaño Formato Ver

No hay ficheros asociados a este ítem.

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem