Mostrar el registro sencillo del ítem
dc.contributor.author | Prado, Carolina | |
dc.contributor.author | Osorio-Barrios, Francisco | |
dc.contributor.author | Falcón, Paulina | |
dc.contributor.author | Espinoza, Alexandra | |
dc.contributor.author | Saez, Juan José | |
dc.contributor.author | Yuseff, María Isabel | |
dc.contributor.author | Pacheco, Rodrigo | |
dc.date.accessioned | 2024-09-26T00:29:51Z | |
dc.date.available | 2024-09-26T00:29:51Z | |
dc.date.issued | 2021-12 | |
dc.identifier.issn | 1742-2094 | |
dc.identifier.uri | https://repositorio.uss.cl/handle/uss/12353 | |
dc.description | Publisher Copyright: © 2021, The Author(s). | |
dc.description.abstract | Background: Recent evidence has shown dopamine as a major regulator of inflammation. Accordingly, dopaminergic regulation of immune cells plays an important role in the physiopathology of inflammatory disorders. Multiple sclerosis (MS) is an inflammatory disease involving a CD4+ T-cell-driven autoimmune response to central nervous system (CNS) derived antigens. Evidence from animal models has suggested that B cells play a fundamental role as antigen-presenting cells (APC) re-stimulating CD4+ T cells in the CNS as well as regulating T-cell response by mean of inflammatory or anti-inflammatory cytokines. Here, we addressed the role of the dopamine receptor D3 (DRD3), which displays the highest affinity for dopamine, in B cells in animal models of MS. Methods: Mice harbouring Drd3-deficient or Drd3-sufficient B cells were generated by bone marrow transplantation into recipient mice devoid of B cells. In these mice, we compared the development of experimental autoimmune encephalomyelitis (EAE) induced by immunization with a myelin oligodendrocyte glycoprotein (MOG)-derived peptide (pMOG), a model that leads to CNS-autoimmunity irrespective of the APC-function of B cells, or by immunization with full-length human MOG protein (huMOG), a model in which antigen-specific activated B cells display a fundamental APC-function in the CNS. APC-function was assessed in vitro by pulsing B cells with huMOG-coated beads and then co-culturing with MOG-specific T cells. Results: Our data show that the selective Drd3 deficiency in B cells abolishes the disease development in the huMOG-induced EAE model. Mechanistic analysis indicates that although DRD3-signalling did not affect the APC-function of B cells, DRD3 favours the CNS-tropism in a subset of pro-inflammatory B cells in the huMOG-induced EAE model, an effect that was associated with higher CXCR3 expression. Conversely, the results show that the selective Drd3 deficiency in B cells exacerbates the disease severity in the pMOG-induced EAE model. Further analysis shows that DRD3-stimulation increased the expression of the CNS-homing molecule CD49d in a B-cell subset with anti-inflammatory features, thus attenuating EAE manifestation in the pMOG-induced EAE model. Conclusions: Our findings demonstrate that DRD3 in B cells exerts a dual role in CNS-autoimmunity, favouring CNS-tropism of pro-inflammatory B cells with APC-function and promoting CNS-homing of B cells with anti-inflammatory features. Thus, these results show DRD3-signalling in B cells as a critical regulator of CNS-autoimmunity. | en |
dc.language.iso | eng | |
dc.relation.ispartof | vol. 18 Issue: no. 1 Pages: | |
dc.source | Journal of Neuroinflammation | |
dc.title | Dopaminergic stimulation leads B-cell infiltration into the central nervous system upon autoimmunity | en |
dc.type | Artículo | |
dc.identifier.doi | 10.1186/s12974-021-02338-1 | |
dc.publisher.department | Facultad de Medicina y Ciencia |
Ficheros | Tamaño | Formato | Ver |
---|---|---|---|
No hay ficheros asociados a este ítem. |