Universidad San Sebastián  
 

Repositorio Institucional Universidad San Sebastián

Búsqueda avanzada

Descubre información por...

 

Título

Ver títulos
 

Autor

Ver autores
 

Tipo

Ver tipos
 

Materia

Ver materias

Buscar documentos por...




Mostrar el registro sencillo del ítem

dc.contributor.author Ahmed, Mostafa
dc.contributor.author Harbi, Ibrahim
dc.contributor.author Hackl, Christoph M.
dc.contributor.author Kennel, Ralph
dc.contributor.author Rodriguez, Jose
dc.contributor.author Abdelrahem, Mohamed
dc.date.accessioned 2024-09-26T00:30:01Z
dc.date.available 2024-09-26T00:30:01Z
dc.date.issued 2022
dc.identifier.issn 1752-1416
dc.identifier.uri https://repositorio.uss.cl/handle/uss/12364
dc.description Publisher Copyright: © 2022 The Authors. IET Renewable Power Generation published by John Wiley & Sons Ltd on behalf of The Institution of Engineering and Technology.
dc.description.abstract This paper discusses the MPPT based on finite-set model predictive control (FS-MPC) in photovoltaic (PV) systems. Generally, the FS-MPC implementation needs more sensors in comparison with the traditional methods due to the existence of the prediction stage. However, it has a fast transient behaviour in case of fast-changing atmospheric conditions. Thus, to make benefit from the FS-MPC principle without increasing the system’s cost, two algorithms are developed to reduce the number of required sensors without altering the efficiency. First, an accurate model of the PV system including the losses is derived, which enables estimation of the output capacitor voltage. Another approach utilizing an extended Kalman filter (EKF) is proposed. The EKF takes advantage of the derived model of the system and estimates the PV current. In addition, practical PV system applications are considered to have an estimate for cost reduction with the proposed methods. The proposed methodologies are compared with the conventional FS-MPC with full sensor utilization, where analysis and evaluation of the current- and voltage-oriented FS-MPC methods are presented. Moreover, robustness assessment of the proposed algorithms with sensor reduction against parameter variation is examined. All studied methods are validated in simulation and experimentally at different operating conditions. en
dc.language.iso eng
dc.source IET Renewable Power Generation
dc.title Maximum power point tracking-based model predictive control with reduced sensor count for PV applications en
dc.type Artículo
dc.identifier.doi 10.1049/rpg2.12535
dc.publisher.department Facultad de Ingeniería, Arquitectura y Diseño


Ficheros en el ítem

Ficheros Tamaño Formato Ver

No hay ficheros asociados a este ítem.

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem