Universidad San Sebastián  
 

Repositorio Institucional Universidad San Sebastián

Búsqueda avanzada

Descubre información por...

 

Título

Ver títulos
 

Autor

Ver autores
 

Tipo

Ver tipos
 

Materia

Ver materias

Buscar documentos por...




Mostrar el registro sencillo del ítem

dc.contributor.author Asvadi-Kermani, Omid
dc.contributor.author Momeni, Hamidreza
dc.contributor.author Justo, Andrea
dc.contributor.author Guerrero, Josep M.
dc.contributor.author Vasquez, Juan C.
dc.contributor.author Rodriguez, Jose
dc.contributor.author Khan, Baseem
dc.date.accessioned 2024-09-26T00:30:55Z
dc.date.available 2024-09-26T00:30:55Z
dc.date.issued 2022
dc.identifier.issn 2169-3536
dc.identifier.uri https://repositorio.uss.cl/handle/uss/12422
dc.description Publisher Copyright: © 2013 IEEE.
dc.description.abstract Optimizing energy consumption in buildings is a significant challenge in today's society. A major part of energy consumption is in heating, ventilation and air conditioning (HVAC) systems. In this paper, the aim is to reduce the energy consumption of air handling units (AHU) by applying optimal control. This system used in this study has four AHUs, all of which are assumed to be the same. Due to the uncertainty of the temperature of the heat exchanger's (H/E) inlet and outlet water, a model of the system was first made using its hypothetical capacity according to the ASHRAE standards. The inlet and outlet water temperatures are calculated using simulated and real data. In order to increase the model's accuracy and facilitate implementation on a real system, the data obtained is used to train a dynamic recurrent neural network (RNN) for the H/E. Furthermore, to increase the system's stability and bolster its response to disturbances, which change system parameters over time and reduce the accuracy of neural network models, an online recursive least squares (RLS-based) adaptive constrained generalized predictive controller (AGPC) is used to control its outlet air temperature. The AGPC attempts to minimize the computational load and estimates the transfer function by using continuously updated input-output data from the model; this model has fewer parameters than the RNN model. Finally, the power consumption of the H/E is calculated. The outlet humidity and airflow are controlled using an optimal controller to minimize energy consumption. The results show a reduction in the energy consumption of 54.95% with respect to the previous work and of 69.9% compared to the dataset from the real system. en
dc.language.iso eng
dc.relation.ispartof vol. 10 Issue: Pages: 56578-56590
dc.source IEEE Access
dc.title Energy Optimization of Air Handling Units Using Constrained Predictive Controllers Based on Dynamic Neural Networks en
dc.type Artículo
dc.identifier.doi 10.1109/ACCESS.2022.3177660
dc.publisher.department Facultad de Ingeniería, Arquitectura y Diseño


Ficheros en el ítem

Ficheros Tamaño Formato Ver

No hay ficheros asociados a este ítem.

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem