Universidad San Sebastián  
 

Repositorio Institucional Universidad San Sebastián

Búsqueda avanzada

Descubre información por...

 

Título

Ver títulos
 

Autor

Ver autores
 

Tipo

Ver tipos
 

Materia

Ver materias

Buscar documentos por...




Mostrar el registro sencillo del ítem

dc.contributor.author Deluigi, Orlando
dc.contributor.author Valencia, Felipe
dc.contributor.author Tramontina, Diego R.
dc.contributor.author Amigo, Nicolás
dc.contributor.author Rojas-Nunez, Javier
dc.contributor.author Bringa, Eduardo M.
dc.date.accessioned 2024-09-26T00:31:26Z
dc.date.available 2024-09-26T00:31:26Z
dc.date.issued 2023-02
dc.identifier.issn 2073-4352
dc.identifier.uri https://repositorio.uss.cl/handle/uss/12456
dc.description Funding Information: This research was funded by Fondo para la Investigación Científica y Tecnológica (FONCyT, Argentina) under grants PICTO-UM-2019-00048 and PIP-2021-2023 11220200102578CO; SNCAD-MinCyT, Argentina under grant NLHPC/ECM-02, SIIP-UNCUYO under grant 06/M008-T1, and Fondo Nacional de Desarrollo Científico y Tecnológico (FONDECYT, Chile) under Grants #11200038, #1190662, and #11190484. Publisher Copyright: © 2023 by the authors.
dc.description.abstract There is a growing interest in High Entropy Alloys (HEAs) due to their outstanding mechanical properties. Most simulation studies have focused on face-centered cubic (fcc) HEAs; however, bcc HEAs can offer a larger elastic modulus and plastic yielding, thus, becoming possible candidates for the next generation of refractory materials. In this work, we focus on molecular dynamics (MD) simulations of bcc HfNbTaZr nanocrystalline samples, with a grain size (d) between 5 and 17 nm, deformed under tension at 300 K. The elastic modulus increases with the grain size and reaches a plateau near 10 nm. We find the typical inverse Hall–Petch (HP) behavior with yield strength, ultimate tensile stress (UTS), and flow stress increasing with d. Up to 12 nm, there are contributions from dislocations and twins; however, grain boundary (GB) activity dominates deformation. For the 5 nm grains, the GB disorder extends and leads to extensive amorphization and grain size reduction. For  (Formula presented.) nm, there is a HP-type behavior with dislocations and twinning controlling deformation. For this regime, there is hardening at large strains. Compared to bcc single metal samples, the HP maximum of this HEA appears at a lower grain size, and this could be related to the chemical complexity facilitating dislocation nucleation. We use machine learning to help understand deformation regimes. We also compare our results to a single crystal (SC) HfNbTaZr HEA deformed along [001] and find that the single crystal is weaker than the nanocrystalline samples. The single crystal deforms initially by twinning and then rapidly by dislocation multiplication, leading to strong hardening. It has been proposed that edge dislocations play a major role in bcc HEA plasticity, and we also analyze the relative contributions of edge versus screw dislocations during deformation for both single crystal and nanocrystalline samples. en
dc.language.iso eng
dc.relation.ispartof vol. 13 Issue: no. 2 Pages:
dc.source Crystals
dc.title Influence of Grain Size on Mechanical Properties of a Refractory High Entropy Alloy under Uniaxial Tension en
dc.type Artículo
dc.identifier.doi 10.3390/cryst13020357
dc.publisher.department Facultad de Ingeniería y Tecnología
dc.publisher.department Facultad de Ingeniería, Arquitectura y Diseño


Ficheros en el ítem

Ficheros Tamaño Formato Ver

No hay ficheros asociados a este ítem.

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem