Universidad San Sebastián  
 

Repositorio Institucional Universidad San Sebastián

Búsqueda avanzada

Descubre información por...

 

Título

Ver títulos
 

Autor

Ver autores
 

Tipo

Ver tipos
 

Materia

Ver materias

Buscar documentos por...




Mostrar el registro sencillo del ítem

dc.contributor.author Ahmed, Mostafa
dc.contributor.author Harbi, Ibrahim
dc.contributor.author Kennel, Ralph
dc.contributor.author Rodriguez, Jose
dc.contributor.author Abdelrahem, Mohamed
dc.date.accessioned 2024-09-26T00:31:54Z
dc.date.available 2024-09-26T00:31:54Z
dc.date.issued 2023-01-15
dc.identifier.issn 1110-0168
dc.identifier.uri https://repositorio.uss.cl/handle/uss/12488
dc.description Funding Information: The work of Jose Rodriguez was supported by Agencia Nacional de Investigación y Desarrollo (ANID) under Project FB0008, Project 1210208, and Project 1221293. Publisher Copyright: © 2022 THE AUTHORS
dc.description.abstract In this article, an enhanced maximum power point tracking (MPPT) technique for photovoltaic (PV) systems is presented. The proposed MPPT is designed for fast-changing operating conditions, where the conventional methods suffer from divergence (drift) under such conditions. Mainly, the reason for divergence in the traditional methods is the confusion between power change due to the perturbation of the control parameter and power variation because of the atmospheric conditions. Therefore, and to differentiate between these cases, additional control loops are added to the conventional perturb and observe (P&O) method to enhance its behavior. Furthermore, in our suggested scheme, the finite-set model predictive control (FS-MPC) principle is integrated with the proposed algorithm to enhance its transient performance. However, and to decrease the computational effort, the prediction stage (including cost function calculation) is eliminated. The suggested methodology is compared with the conventional FS-MPC for evaluation using experimental results at different atmospheric conditions (static and dynamic radiation). en
dc.language.iso eng
dc.relation.ispartof vol. 63 Issue: Pages: 613-624
dc.source Alexandria Engineering Journal
dc.title An improved photovoltaic maximum power point tracking technique-based model predictive control for fast atmospheric conditions en
dc.type Artículo
dc.identifier.doi 10.1016/j.aej.2022.11.040
dc.publisher.department Facultad de Ingeniería, Arquitectura y Diseño


Ficheros en el ítem

Ficheros Tamaño Formato Ver

No hay ficheros asociados a este ítem.

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem