Universidad San Sebastián  
 

Repositorio Institucional Universidad San Sebastián

Búsqueda avanzada

Descubre información por...

 

Título

Ver títulos
 

Autor

Ver autores
 

Tipo

Ver tipos
 

Materia

Ver materias

Buscar documentos por...




Mostrar el registro sencillo del ítem

dc.contributor.author Amigo, Nicolás
dc.contributor.author Palominos, Simón
dc.contributor.author Valencia, Felipe J.
dc.date.accessioned 2024-09-26T00:32:44Z
dc.date.available 2024-09-26T00:32:44Z
dc.date.issued 2023-12
dc.identifier.issn 2045-2322
dc.identifier.uri https://repositorio.uss.cl/handle/uss/12545
dc.description Publisher Copyright: © 2023, The Author(s).
dc.description.abstract Metallic glasses are one of the most interesting mechanical materials studied in the last years, but as amorphous solids, they differ strongly from their crystalline counterparts. This matter can be addressed with the development and application of predictive techniques capable to describe the plastic regime. Here, machine learning models were employed for the prediction of plastic properties in CuZr metallic glasses. To this aim, 100 different samples were subjected to tensile tests by means of molecular dynamics simulations. A total of 17 materials properties were calculated and explored using statistical analysis. Strong correlations were found for stoichiometry, temperature, structural, and elastic properties with plastic properties. Three regression models were employed for the prediction of six plastic properties. Linear and Ridge regressions delivered the better prediction capability, with coefficients of determination above ∼ 80% for three plastic properties, whereas Lasso regression rendered lower performance, with coefficients of determination above ∼ 60% for two plastic properties. Overall, our work shows that molecular dynamics simulations together with machine learning models can provide a framework for the prediction of plastic behavior of complex materials. en
dc.language.iso eng
dc.relation.ispartof vol. 13 Issue: no. 1 Pages:
dc.source Scientific Reports
dc.title Machine learning modeling for the prediction of plastic properties in metallic glasses en
dc.type Artículo
dc.identifier.doi 10.1038/s41598-023-27644-x


Ficheros en el ítem

Ficheros Tamaño Formato Ver

No hay ficheros asociados a este ítem.

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem