Resumen:
BACKGROUND Mounting evidence has associated high sodium (HS) intake with hypertension, cardiovascular disease, and stroke. We investigated whether HS intake modulates the parameters of endothelial damage, inflammation, and oxidative stress. METHODS We used a cross-sectional study design including 223 Chilean subjects (6.9-65.0 years old). We measured aldosterone, renin activity, cortisol, cortisone, adiponectin, leptin, hsCRP, interleukin 6 (IL-6), tumor necrosis factor-α (TNF-α), plasminogen activator inhibitor type 1 (PAI-1), metalloproteinase (MMP)-9 and MMP-2 activity, and malondialdehyde. Sodium and creatinine were measured in 24-hour urine samples. The subjects were divided by sodium intake, high sodium (HS): ≥150 mEq/day, n = 118, and adequate sodium (AS): <150 mEq/day, n = 105. RESULTS We observed a positive correlation between urinary sodium excretion and blood pressure (r = 0.1669, P = 0.0124 for systolic and r = 0.2416, P = 0.0003 for diastolic), glycemia (r = 0.2660, P < 0.0001), and triglycerides (r = 0.1604, P = 0.0175) and a highly significant correlation between sodium excretion and PAI-1 (r = 0.2701, P < 0.0001). An inverse correlation was observed between urinary sodium and HDL-cholesterol (r = 0.2093, P = 0.0018) and adiponectin (r = 0.2679, P < 0.0001). In a linear regression model, urinary sodium excretion remained significantly associated with PAI-1 values even after adjusting for age, gender, and BMI. The HS group had higher blood pressure, glycemia, HOMA-IR, atherogenic index of plasma, and PAI-1 values than the group with AS intake. CONCLUSIONS HS intake is associated with endothelial damage (high PAI-1) and metabolic dysregulation. On the other hand, inflammation and oxidative stress parameters are not modified by sodium intake.
|