Universidad San Sebastián  
 

Repositorio Institucional Universidad San Sebastián

Búsqueda avanzada

Descubre información por...

 

Título

Ver títulos
 

Autor

Ver autores
 

Tipo

Ver tipos
 

Materia

Ver materias

Buscar documentos por...




Mostrar el registro sencillo del ítem

dc.contributor.author Saint-Criq, Vinciane
dc.contributor.author Guequén, Anita
dc.contributor.author Philp, Amber
dc.contributor.author Villanueva, Sandra
dc.contributor.author Apablaza, Tábata
dc.contributor.author Fernández-Moncada, Ignacio
dc.contributor.author Mansilla, Agustín
dc.contributor.author Delpiano, Livia
dc.contributor.author Ruminot, Iván
dc.contributor.author Carrasco, Cristian
dc.contributor.author Gray, Michael A.
dc.contributor.author Flores, Carlos A.
dc.date.accessioned 2024-09-26T00:34:29Z
dc.date.available 2024-09-26T00:34:29Z
dc.date.issued 2022-05
dc.identifier.issn 2050-084X
dc.identifier.uri https://repositorio.uss.cl/handle/uss/12665
dc.description Funding Information: homeostasis is supported by strong evidence from the use of knock 爁紁딁騀 Funding Information: This work was supported by two CF Trust Strategic Research Centre grants 縀SRC  and SRC 缀 Publisher Copyright: © 2022, eLife Sciences Publications Ltd. All rights reserved.
dc.description.abstract Bicarbonate secretion is a fundamental process involved in maintaining acid-base homeostasis. Disruption of bicarbonate entry into airway lumen, as has been observed in cystic fibrosis, produces several defects in lung function due to thick mucus accumulation. Bicarbonate is critical for correct mucin deployment and there is increasing interest in understanding its role in airway physiology, particularly in the initiation of lung disease in children affected by cystic fibrosis, in the absence of detectable bacterial infection. The current model of anion secretion in mammalian airways consists of CFTR and TMEM16A as apical anion exit channels, with limited capacity for bicarbonate transport compared to chloride. However, both channels can couple to SLC26A4 anion exchanger to maximise bicarbonate secretion. Nevertheless, current models lack any details about the identity of the basolateral protein(s) responsible for bicarbonate uptake into airway epithelial cells. We report herein that the electrogenic, sodium-dependent, bicarbonate cotransporter, SLC4A4, is expressed in the basolateral membrane of human and mouse airways, and that it’s pharmacological inhibition or genetic silencing reduces bicarbonate secretion. In fully differentiated primary human airway cells cultures, SLC4A4 inhibition induced an acidification of the airways surface liquid and markedly reduced the capacity of cells to recover from an acid load. Studies in the Slc4a4-null mice revealed a previously unreported lung phenotype, characterized by mucus accumulation and reduced mucociliary clearance. Collectively, our results demonstrate that the reduction of SLC4A4 function induced a CF-like phenotype, even when chloride secretion remained intact, highlighting the important role SLC4A4 plays in bicarbonate secretion and mammalian airway function. en
dc.language.iso eng
dc.relation.ispartof vol. 11 Issue: Pages:
dc.source eLife
dc.title Inhibition of the sodium-dependent HCO3 - transporter SLC4A4, produces a cystic fibrosis-like airway disease phenotype en
dc.type Artículo
dc.identifier.doi 10.7554/eLife.75871
dc.publisher.department Facultad de Ciencias para el Cuidado de la Salud
dc.publisher.department Facultad de Medicina y Ciencia


Ficheros en el ítem

Ficheros Tamaño Formato Ver

No hay ficheros asociados a este ítem.

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem