Universidad San Sebastián  
 

Repositorio Institucional Universidad San Sebastián

Búsqueda avanzada

Descubre información por...

 

Título

Ver títulos
 

Autor

Ver autores
 

Tipo

Ver tipos
 

Materia

Ver materias

Buscar documentos por...




Mostrar el registro sencillo del ítem

dc.contributor.author Bustamante-Barrientos, Felipe A.
dc.contributor.author Méndez-Ruette, Maxs
dc.contributor.author Molina, Luis
dc.contributor.author Koning, Tania
dc.contributor.author Ehrenfeld, Pamela
dc.contributor.author González, Carlos B.
dc.contributor.author Wyneken, Ursula
dc.contributor.author Henzi, Roberto
dc.contributor.author Bátiz, Luis Federico
dc.date.accessioned 2024-09-26T00:38:22Z
dc.date.available 2024-09-26T00:38:22Z
dc.date.issued 2023
dc.identifier.issn 2296-634X
dc.identifier.uri https://repositorio.uss.cl/handle/uss/12923
dc.description Funding Information: This article was supported by the Chilean FONDECYT Regular Grants 1141015 and 1211384 (LB), 1200693 (UW), 1201635 (PE), and 1150176 (CG); FONDECYT Postdoctoral Grant 3190646 (RH); Agencia Nacional de Investigación y Desarrollo (ANID)-COVID0706 Grant (LB); FONDEF ID19I10116 (UW); FAI-UANDES and FAMED-UANDES PhD Scholarship (MM); IMPACT PhD Scholarship (MM); CONICYT Doctoral Scholarship 21160084 (FB-B.); and FAI-UANDES and FONDECYT N° 3220204 Postdoctoral Fellowship (FB-B). Publisher Copyright: Copyright © 2023 Bustamante-Barrientos, Méndez-Ruette, Molina, Koning, Ehrenfeld, González, Wyneken, Henzi and Bátiz.
dc.description.abstract Background: The M105I point mutation in α-SNAP (Soluble N-ethylmaleimide-sensitive factor attachment protein-alpha) leads in mice to a complex phenotype known as hyh (hydrocephalus with hop gait), characterized by cortical malformation and hydrocephalus, among other neuropathological features. Studies performed by our laboratory and others support that the hyh phenotype is triggered by a primary alteration in embryonic neural stem/progenitor cells (NSPCs) that leads to a disruption of the ventricular and subventricular zones (VZ/SVZ) during the neurogenic period. Besides the canonical role of α-SNAP in SNARE-mediated intracellular membrane fusion dynamics, it also negatively modulates AMP-activated protein kinase (AMPK) activity. AMPK is a conserved metabolic sensor associated with the proliferation/differentiation balance in NSPCs. Methods: Brain samples from hyh mutant mice (hydrocephalus with hop gait) (B6C3Fe-a/a-Napahyh/J) were analyzed by light microscopy, immunofluorescence, and Western blot at different developmental stages. In addition, NSPCs derived from WT and hyh mutant mice were cultured as neurospheres for in vitro characterization and pharmacological assays. BrdU labeling was used to assess proliferative activity in situ and in vitro. Pharmacological modulation of AMPK was performed using Compound C (AMPK inhibitor) and AICAR (AMPK activator). Results: α-SNAP was preferentially expressed in the brain, showing variations in the levels of α-SNAP protein in different brain regions and developmental stages. NSPCs from hyh mice (hyh-NSPCs) displayed reduced levels of α-SNAP and increased levels of phosphorylated AMPKα (pAMPKαThr172), which were associated with a reduction in their proliferative activity and a preferential commitment with the neuronal lineage. Interestingly, pharmacological inhibition of AMPK in hyh-NSPCs increased proliferative activity and completely abolished the increased generation of neurons. Conversely, AICAR-mediated activation of AMPK in WT-NSPCs reduced proliferation and boosted neuronal differentiation. Discussion: Our findings support that α-SNAP regulates AMPK signaling in NSPCs, further modulating their neurogenic capacity. The naturally occurring M105I mutation of α-SNAP provokes an AMPK overactivation in NSPCs, thus connecting the α-SNAP/AMPK axis with the etiopathogenesis and neuropathology of the hyh phenotype. en
dc.language.iso eng
dc.relation.ispartof vol. 11 Issue: Pages:
dc.source Frontiers in Cell and Developmental Biology
dc.title Alpha-SNAP (M105I) mutation promotes neuronal differentiation of neural stem/progenitor cells through overactivation of AMPK en
dc.type Artículo
dc.identifier.doi 10.3389/fcell.2023.1061777
dc.publisher.department Facultad de Medicina y Ciencia


Ficheros en el ítem

Ficheros Tamaño Formato Ver

No hay ficheros asociados a este ítem.

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem