Universidad San Sebastián  
 

Repositorio Institucional Universidad San Sebastián

Búsqueda avanzada

Descubre información por...

 

Título

Ver títulos
 

Autor

Ver autores
 

Tipo

Ver tipos
 

Materia

Ver materias

Buscar documentos por...




Mostrar el registro sencillo del ítem

dc.contributor.author Rodríguez-López, Lien
dc.contributor.author Bustos Usta, David
dc.contributor.author Bravo Alvarez, Lisandra
dc.contributor.author Duran-Llacer, Iongel
dc.contributor.author Lami, Andrea
dc.contributor.author Martínez-Retureta, Rebeca
dc.contributor.author Urrutia, Roberto
dc.date.accessioned 2024-09-26T00:39:03Z
dc.date.available 2024-09-26T00:39:03Z
dc.date.issued 2023-06
dc.identifier.issn 2073-4441
dc.identifier.uri https://repositorio.uss.cl/handle/uss/12972
dc.description Funding Information: This research was funded by VRID Universidad San Sebastián and CRHIAM (ANID/FONDAP/15130015). Funding Information: L.R.-L. is grateful to the VRIDFAI21/10 project of the Universidad San Sebastian. Special thanks are also given to the Centro de Recursos Hídricos para la Agricultura y la Minería (CRHIAM) (Project ANID/FONDAP/15130015). This publication was supported by the Vicerrectoría de Investigación y Doctorados de la Universidad San Sebastián—Fondo VRID_APC23/06. Publisher Copyright: © 2023 by the authors.
dc.description.abstract The world’s water ecosystems have been affected by various human activities. Artificial intelligence techniques, especially machine learning, have become an important tool for predicting the water quality of inland aquatic ecosystems. As an excellent biological indicator, chlorophyll-a was studied to determine the state of water quality in Lake Llanquihue, located in southern Chile. A 31-year time series (1989 to 2020) of data collected in situ was used to determine the evolution of limnological parameters at eight spaced stations covering all of the main points of the lake, and the year, month, day, and hour time intervals were selected. Using machine learning techniques, out of eight estimation algorithms that were applied with real data to estimate chlorophyll-a, three models showed better performance (XGBoost, LightGBM, and AdaBoost). The results for the best models show excellent performance, with a coefficient of determination between 0.81 and 0.99, a root-mean-square error of between 0.03 ug/L and 0.46 ug/L, and a mean bias error of between 0.01 and 0.27 ug/L. These models are scalable and applicable to other lake systems of interest that present similar conditions and can support decision making related to water resources. en
dc.language.iso eng
dc.relation.ispartof vol. 15 Issue: no. 11 Pages:
dc.source Water (Switzerland)
dc.title Machine Learning Algorithms for the Estimation of Water Quality Parameters in Lake Llanquihue in Southern Chile en
dc.type Artículo
dc.identifier.doi 10.3390/w15111994
dc.publisher.department Facultad de Ingeniería, Arquitectura y Diseño


Ficheros en el ítem

Ficheros Tamaño Formato Ver

No hay ficheros asociados a este ítem.

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem