Universidad San Sebastián  
 

Repositorio Institucional Universidad San Sebastián

Búsqueda avanzada

Descubre información por...

 

Título

Ver títulos
 

Autor

Ver autores
 

Tipo

Ver tipos
 

Materia

Ver materias

Buscar documentos por...




Mostrar el registro sencillo del ítem

dc.contributor.author Cuadros, Jhosmary
dc.contributor.author Z-Rivera, Lucía
dc.contributor.author Castro, Christian
dc.contributor.author Whitaker, Grace
dc.contributor.author Otero, Mónica
dc.contributor.author Weinstein, Alejandro
dc.contributor.author Martínez-Montes, Eduardo
dc.contributor.author Prado, Pavel
dc.contributor.author Zañartu, Matías
dc.date.accessioned 2024-09-26T00:39:31Z
dc.date.available 2024-09-26T00:39:31Z
dc.date.issued 2023-06-25
dc.identifier.other ORCID: /0000-0002-1324-6400/work/137551951
dc.identifier.other Mendeley: 7619c4f1-d8c8-35b7-99a5-97a7a3e5be12
dc.identifier.uri https://repositorio.uss.cl/handle/uss/13007
dc.description Publisher Copyright: © 2023 by the authors.
dc.description.abstract Featured Application: An extension of the DIVA model to include EEG is presented and initially validated using group-level statistics. The DIVA_EEG expands the number of scenarios in which vocal and speech behaviors can be assessed and has potential applications for personalized model-driven interventions. The neurocomputational model ‘Directions into Velocities of Articulators’ (DIVA) was developed to account for various aspects of normal and disordered speech production and acquisition. The neural substrates of DIVA were established through functional magnetic resonance imaging (fMRI), providing physiological validation of the model. This study introduces DIVA_EEG an extension of DIVA that utilizes electroencephalography (EEG) to leverage the high temporal resolution and broad availability of EEG over fMRI. For the development of DIVA_EEG, EEG-like signals were derived from original equations describing the activity of the different DIVA maps. Synthetic EEG associated with the utterance of syllables was generated when both unperturbed and perturbed auditory feedback (first formant perturbations) were simulated. The cortical activation maps derived from synthetic EEG closely resembled those of the original DIVA model. To validate DIVA_EEG, the EEG of individuals with typical voices (N = 30) was acquired during an altered auditory feedback paradigm. The resulting empirical brain activity maps significantly overlapped with those predicted by DIVA_EEG. In conjunction with other recent model extensions, DIVA_EEG lays the foundations for constructing a complete neurocomputational framework to tackle vocal and speech disorders, which can guide model-driven personalized interventions. en
dc.language.iso und
dc.relation.ispartof vol. 13 Issue: no. 13 Pages:
dc.source Applied Sciences
dc.title DIVA Meets EEG: Model Validation Using Formant-Shift Reflex
dc.type Artículo
dc.identifier.doi 10.3390/app13137512
dc.publisher.department Facultad de Ingeniería y Tecnología
dc.publisher.department Facultad de Ingeniería, Arquitectura y Diseño
dc.publisher.department Facultad de Ciencias de la Salud
dc.publisher.department Facultad de Odontología y Ciencias de la Rehabilitación


Ficheros en el ítem

Ficheros Tamaño Formato Ver

No hay ficheros asociados a este ítem.

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem