Universidad San Sebastián  
 

Repositorio Institucional Universidad San Sebastián

Búsqueda avanzada

Descubre información por...

 

Título

Ver títulos
 

Autor

Ver autores
 

Tipo

Ver tipos
 

Materia

Ver materias

Buscar documentos por...




Mostrar el registro sencillo del ítem

dc.contributor.author Gareau, Daniel S.
dc.contributor.author Browning, James
dc.contributor.author Correa Da Rosa, Joel
dc.contributor.author Suarez-Farinas, Mayte
dc.contributor.author Lish, Samantha
dc.contributor.author Zong, Amanda M.
dc.contributor.author Firester, Benjamin
dc.contributor.author Vrattos, Charles
dc.contributor.author Renert-Yuval, Yael
dc.contributor.author Gamboa, Mauricio
dc.contributor.author Vallone, María G.
dc.contributor.author Barragán-Estudillo, Zamira F.
dc.contributor.author Tamez-Peña, Alejandra L.
dc.contributor.author Montoya, Javier
dc.contributor.author Jesús-Silva, Miriam A.
dc.contributor.author Carrera, Cristina
dc.contributor.author Malvehy, Josep
dc.contributor.author Puig, Susana
dc.contributor.author Marghoob, Ashfaq
dc.contributor.author Carucci, John A.
dc.contributor.author Krueger, James G.
dc.date.accessioned 2024-09-26T00:41:06Z
dc.date.available 2024-09-26T00:41:06Z
dc.date.issued 2020-11-01
dc.identifier.issn 1083-3668
dc.identifier.uri https://repositorio.uss.cl/handle/uss/13114
dc.description Publisher Copyright: © The Authors(s) 2020.
dc.description.abstract Significance: Melanoma is a deadly cancer that physicians struggle to diagnose early because they lack the knowledge to differentiate benign from malignant lesions. Deep machine learning approaches to image analysis offer promise but lack the transparency to be widely adopted as stand-alone diagnostics. Aim: We aimed to create a transparent machine learning technology (i.e., not deep learning) to discriminate melanomas from nevi in dermoscopy images and an interface for sensory cue integration. Approach: Imaging biomarker cues (IBCs) fed ensemble machine learning classifier (Eclass) training while raw images fed deep learning classifier training. We compared the areas under the diagnostic receiver operator curves. Results: Our interpretable machine learning algorithm outperformed the leading deep-learning approach 75% of the time. The user interface displayed only the diagnostic imaging biomarkers as IBCs. Conclusions: From a translational perspective, Eclass is better than convolutional machine learning diagnosis in that physicians can embrace it faster than black box outputs. Imaging biomarkers cues may be used during sensory cue integration in clinical screening. Our method may be applied to other image-based diagnostic analyses, including pathology and radiology. en
dc.language.iso eng
dc.relation.ispartof vol. 25 Issue: no. 11 Pages:
dc.source Journal of Biomedical Optics
dc.title Deep learning-level melanoma detection by interpretable machine learning and imaging biomarker cues en
dc.type Artículo
dc.identifier.doi 10.1117/1.JBO.25.11.112906
dc.publisher.department Facultad de Medicina y Ciencia


Ficheros en el ítem

Ficheros Tamaño Formato Ver

No hay ficheros asociados a este ítem.

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem