Universidad San Sebastián  
 

Repositorio Institucional Universidad San Sebastián

Búsqueda avanzada

Descubre información por...

 

Título

Ver títulos
 

Autor

Ver autores
 

Tipo

Ver tipos
 

Materia

Ver materias

Buscar documentos por...




Mostrar el registro sencillo del ítem

dc.contributor.author Barros, Jorge
dc.contributor.author Morales, Susana
dc.contributor.author García, Arnol
dc.contributor.author Echávarri, Orietta
dc.contributor.author Fischman, Ronit
dc.contributor.author Szmulewicz, Marta
dc.contributor.author Moya, Claudia
dc.contributor.author Núñez, Catalina
dc.contributor.author Tomicic, Alemka
dc.date.accessioned 2024-09-26T00:42:17Z
dc.date.available 2024-09-26T00:42:17Z
dc.date.issued 2020-03-30
dc.identifier.issn 1471-244X
dc.identifier.uri https://repositorio.uss.cl/handle/uss/13196
dc.description Publisher Copyright: © 2020 The Author(s).
dc.description.abstract Background: This study aimed to determine conditional dependence relationships of variables that contribute to psychological vulnerability associated with suicide risk. A Bayesian network (BN) was developed and applied to establish conditional dependence relationships among variables for each individual subject studied. These conditional dependencies represented the different states that patients could experience in relation to suicidal behavior (SB). The clinical sample included 650 mental health patients with mood and anxiety symptomatology. Results: Mainly indicated that variables within the Bayesian network are part of each patient's state of psychological vulnerability and have the potential to impact such states and that these variables coexist and are relatively stable over time. These results have enabled us to offer a tool to detect states of psychological vulnerability associated with suicide risk. Conclusion: If we accept that suicidal behaviors (vulnerability, ideation, and suicidal attempts) exist in constant change and are unstable, we can investigate what individuals experience at specific moments to become better able to intervene in a timely manner to prevent such behaviors. Future testing of the tool developed in this study is needed, not only in specialized mental health environments but also in other environments with high rates of mental illness, such as primary healthcare facilities and educational institutions. en
dc.language.iso eng
dc.relation.ispartof vol. 20 Issue: no. 1 Pages:
dc.source BMC Psychiatry
dc.title Recognizing states of psychological vulnerability to suicidal behavior : A Bayesian network of artificial intelligence applied to a clinical sample en
dc.type Artículo
dc.identifier.doi 10.1186/s12888-020-02535-x
dc.publisher.department Facultad de Ciencias para el Cuidado de la Salud


Ficheros en el ítem

Ficheros Tamaño Formato Ver

No hay ficheros asociados a este ítem.

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem