Universidad San Sebastián  
 

Repositorio Institucional Universidad San Sebastián

Búsqueda avanzada

Descubre información por...

 

Título

Ver títulos
 

Autor

Ver autores
 

Tipo

Ver tipos
 

Materia

Ver materias

Buscar documentos por...




Mostrar el registro sencillo del ítem

dc.contributor.author Barros, Jorge
dc.contributor.author Morales, Susana
dc.contributor.author Echávarri, Orietta
dc.contributor.author García, Arnol
dc.contributor.author Ortega, Jaime
dc.contributor.author Asahi, Takeshi
dc.contributor.author Moya, Claudia
dc.contributor.author Fischman, Ronit
dc.contributor.author Maino, María P.
dc.contributor.author Núñez, Catalina
dc.date.accessioned 2024-09-26T00:42:41Z
dc.date.available 2024-09-26T00:42:41Z
dc.date.issued 2017-01-01
dc.identifier.issn 1516-4446
dc.identifier.uri https://repositorio.uss.cl/handle/uss/13225
dc.description Publisher Copyright: © 2017, Associacao Brasileira de Psiquiatria. All rights reserved.
dc.description.abstract Objective: To analyze suicidal behavior and build a predictive model for suicide risk using data mining (DM) analysis. Methods: A study of 707 Chilean mental health patients (with and without suicide risk) was carried out across three healthcare centers in the Metropolitan Region of Santiago, Chile. Three hundred forty-three variables were studied using five questionnaires. DM and machine-learning tools were used via the support vector machine technique. Results: The model selected 22 variables that, depending on the circumstances in which they all occur, define whether a person belongs in a suicide risk zone (accuracy = 0.78, sensitivity = 0.77, and specificity = 0.79). Being in a suicide risk zone means patients are more vulnerable to suicide attempts or are thinking about suicide. The interrelationship between these variables is highly nonlinear, and it is interesting to note the particular ways in which they are configured for each case. The model shows that the variables of a suicide risk zone are related to individual unrest, personal satisfaction, and reasons for living, particularly those related to beliefs in one’s own capacities and coping abilities. Conclusion: These variables can be used to create an assessment tool and enables us to identify individual risk and protective factors. This may also contribute to therapeutic intervention by strengthening feelings of personal well-being and reasons for staying alive. Our results prompted the design of a new clinical tool, which is fast and easy to use and aids in evaluating the trajectory of suicide risk at a given moment. en
dc.language.iso eng
dc.relation.ispartof vol. 39 Issue: no. 1 Pages: 1-11
dc.source Revista Brasileira de Psiquiatria
dc.title Suicide detection in Chile : Proposing a predictive model for suicide risk in a clinical sample of patients with mood disorders en
dc.type Artículo
dc.identifier.doi 10.1590/1516-4446-2015-1877
dc.publisher.department Facultad de Ciencias para el Cuidado de la Salud


Ficheros en el ítem

Ficheros Tamaño Formato Ver

No hay ficheros asociados a este ítem.

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem