Universidad San Sebastián  
 

Repositorio Institucional Universidad San Sebastián

Búsqueda avanzada

Descubre información por...

 

Título

Ver títulos
 

Autor

Ver autores
 

Tipo

Ver tipos
 

Materia

Ver materias

Buscar documentos por...




Mostrar el registro sencillo del ítem

dc.contributor.author Alfaro, Miguel
dc.contributor.author Fuertes, Guillermo
dc.contributor.author Vargas, Manuel
dc.contributor.author Sepúlveda, Juan
dc.contributor.author Veloso-Poblete, Matias
dc.date.accessioned 2024-09-26T00:45:17Z
dc.date.available 2024-09-26T00:45:17Z
dc.date.issued 2018
dc.identifier.issn 1076-2787
dc.identifier.uri https://repositorio.uss.cl/handle/uss/13393
dc.description Publisher Copyright: Copyright © 2018 Miguel Alfaro et al.
dc.description.abstract In this article, two models of the forecast of time series obtained from the chaotic dynamic systems are presented: the Lorenz system, the manufacture system, and the volume of the Great Salt Lake of Utah. The theory of the nonlinear dynamic systems indicates the capacity of making good-quality predictions of series coming from dynamic systems with chaotic behavior up to a temporal horizon determined by the inverse of the major Lyapunov exponent. The analysis of the Fourier power spectrum and the calculation of the maximum Lyapunov exponent allow confirming the origin of the series from a chaotic dynamic system. The delay time and the global dimension are employed as parameters in the models of forecast of artificial neuronal networks (ANN) and support vector machine (SVM). This research demonstrates how forecast models built with ANN and SVM have the capacity of making forecasts of good quality, in a superior temporal horizon at the determined interval by the inverse of the maximum Lyapunov exponent or theoretical forecast frontier before deteriorating exponentially. en
dc.language.iso eng
dc.relation.ispartof vol. 2018 Issue: Pages:
dc.source Complexity
dc.title Forecast of chaotic series in a horizon superior to the inverse of the maximum lyapunov exponent en
dc.type Artículo
dc.identifier.doi 10.1155/2018/1452683
dc.publisher.department Facultad de Ingeniería y Tecnología
dc.publisher.department Facultad de Ingeniería, Arquitectura y Diseño


Ficheros en el ítem

Ficheros Tamaño Formato Ver

No hay ficheros asociados a este ítem.

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem