Universidad San Sebastián  
 

Repositorio Institucional Universidad San Sebastián

Búsqueda avanzada

Descubre información por...

 

Título

Ver títulos
 

Autor

Ver autores
 

Tipo

Ver tipos
 

Materia

Ver materias

Buscar documentos por...




Mostrar el registro sencillo del ítem

dc.contributor.author Fuentes, M. A.
dc.contributor.author Cáceres, M. O.
dc.date.accessioned 2024-09-26T00:46:31Z
dc.date.available 2024-09-26T00:46:31Z
dc.date.issued 2015
dc.identifier.issn 0973-5348
dc.identifier.uri https://repositorio.uss.cl/handle/uss/13480
dc.description Publisher Copyright: © 2015 EDP Sciences.
dc.description.abstract We described the first passage time distribution associated to the stochastic evolution from an unstable uniform state to a patterned one (attractor of the system), when the time evolution is given by an integro-differential equation describing a population model. In order to obtain analytical results we used the Stochastic Path Perturbation Approach introducing a minimum coupling approximation into the nonlinear dynamics, and a stochastic multiscale perturbation expansion. We show that the stochastic multiscale perturbation is a necessary tool to handle other problems like: nonlinear instabilities and multiplicative stochastic partial differential equations. A small noise parameter was introduced to define the random escape of the stochastic field. We carried out Monte Carlo simulations in a non-local Fisher like equation, to show the agreement with our theoretical predictions. en
dc.language.iso eng
dc.relation.ispartof vol. 10 Issue: no. 6 Pages: 48-60
dc.source Mathematical Modelling of Natural Phenomena
dc.title Stochastic Path Perturbation Approach Applied to Non-Local Non-Linear Equations in Population Dynamics en
dc.type Artículo
dc.identifier.doi 10.1051/mmnp/201510605


Ficheros en el ítem

Ficheros Tamaño Formato Ver

No hay ficheros asociados a este ítem.

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem