Mostrar el registro sencillo del ítem
dc.contributor.author | Fuentes, M. A. | |
dc.contributor.author | Cáceres, M. O. | |
dc.date.accessioned | 2024-09-26T00:46:31Z | |
dc.date.available | 2024-09-26T00:46:31Z | |
dc.date.issued | 2015 | |
dc.identifier.issn | 0973-5348 | |
dc.identifier.uri | https://repositorio.uss.cl/handle/uss/13480 | |
dc.description | Publisher Copyright: © 2015 EDP Sciences. | |
dc.description.abstract | We described the first passage time distribution associated to the stochastic evolution from an unstable uniform state to a patterned one (attractor of the system), when the time evolution is given by an integro-differential equation describing a population model. In order to obtain analytical results we used the Stochastic Path Perturbation Approach introducing a minimum coupling approximation into the nonlinear dynamics, and a stochastic multiscale perturbation expansion. We show that the stochastic multiscale perturbation is a necessary tool to handle other problems like: nonlinear instabilities and multiplicative stochastic partial differential equations. A small noise parameter was introduced to define the random escape of the stochastic field. We carried out Monte Carlo simulations in a non-local Fisher like equation, to show the agreement with our theoretical predictions. | en |
dc.language.iso | eng | |
dc.relation.ispartof | vol. 10 Issue: no. 6 Pages: 48-60 | |
dc.source | Mathematical Modelling of Natural Phenomena | |
dc.title | Stochastic Path Perturbation Approach Applied to Non-Local Non-Linear Equations in Population Dynamics | en |
dc.type | Artículo | |
dc.identifier.doi | 10.1051/mmnp/201510605 |
Ficheros | Tamaño | Formato | Ver |
---|---|---|---|
No hay ficheros asociados a este ítem. |