Universidad San Sebastián  
 

Repositorio Institucional Universidad San Sebastián

Búsqueda avanzada

Descubre información por...

 

Título

Ver títulos
 

Autor

Ver autores
 

Tipo

Ver tipos
 

Materia

Ver materias

Buscar documentos por...




Mostrar el registro sencillo del ítem

dc.contributor.author Schultz, Benjamin G.
dc.contributor.author Joukhadar, Zaher
dc.contributor.author Nattala, Usha
dc.contributor.author Quiroga, Maria del Mar
dc.contributor.author Noffs, Gustavo
dc.contributor.author Rojas, Sandra
dc.contributor.author Reece, Hannah
dc.contributor.author Van Der Walt, Anneke
dc.contributor.author Vogel, Adam P.
dc.date.accessioned 2024-09-26T00:47:32Z
dc.date.available 2024-09-26T00:47:32Z
dc.date.issued 2023
dc.identifier.issn 1534-4320
dc.identifier.uri https://repositorio.uss.cl/handle/uss/13550
dc.description Publisher Copyright: © 2001-2011 IEEE.
dc.description.abstract Neurodegenerative disease often affects speech. Speech acoustics can be used as objective clinical markers of pathology. Previous investigations of pathological speech have primarily compared controls with one specific condition and excluded comorbidities. We broaden the utility of speech markers by examining how multiple acoustic features can delineate diseases. We used supervised machine learning with gradient boosting (CatBoost) to delineate healthy speech from speech of people with multiple sclerosis or Friedreich ataxia. Participants performed a diadochokinetic task where they repeated alternating syllables. We subjected 74 spectral and temporal prosodic features from the speech recordings to machine learning. Results showed that Friedreich ataxia, multiple sclerosis and healthy controls were all identified with high accuracy (over 82%). Twenty-one acoustic features were strong markers of neurodegenerative diseases, falling under the categories of spectral qualia, spectral power, and speech rate. We demonstrated that speech markers can delineate neurodegenerative diseases and distinguish healthy speech from pathological speech with high accuracy. Findings emphasize the importance of examining speech outcomes when assessing indicators of neurodegenerative disease. We propose large-scale initiatives to broaden the scope for differentiating other neurological diseases and affective disorders. en
dc.language.iso eng
dc.relation.ispartof vol. 31 Issue: Pages: 4278-4285
dc.source IEEE Transactions on Neural Systems and Rehabilitation Engineering
dc.title Disease Delineation for Multiple Sclerosis, Friedreich Ataxia, and Healthy Controls Using Supervised Machine Learning on Speech Acoustics en
dc.type Artículo
dc.identifier.doi 10.1109/TNSRE.2023.3321874
dc.publisher.department Facultad de Ciencias de la Salud
dc.publisher.department Facultad de Odontología y Ciencias de la Rehabilitación


Ficheros en el ítem

Ficheros Tamaño Formato Ver

No hay ficheros asociados a este ítem.

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem