Universidad San Sebastián  
 

Repositorio Institucional Universidad San Sebastián

Búsqueda avanzada

Descubre información por...

 

Título

Ver títulos
 

Autor

Ver autores
 

Tipo

Ver tipos
 

Materia

Ver materias

Buscar documentos por...




Mostrar el registro sencillo del ítem

dc.contributor.author Castillo-Ibarra, Emilio
dc.contributor.author Alsina, Marco A.
dc.contributor.author Astudillo, Cesar A.
dc.contributor.author Fuenzalida-Henríquez, Ignacio
dc.date.accessioned 2024-09-26T00:47:52Z
dc.date.available 2024-09-26T00:47:52Z
dc.date.issued 2023-10
dc.identifier.issn 2227-7390
dc.identifier.uri https://repositorio.uss.cl/handle/uss/13571
dc.description Publisher Copyright: © 2023 by the authors.
dc.description.abstract Unsupervised feature selection (UFS) has received great interest in various areas of research that require dimensionality reduction, including machine learning, data mining, and statistical analysis. However, UFS algorithms are known to perform poorly on datasets with missing data, exhibiting a significant computational load and learning bias. In this work, we propose a novel and robust UFS method, designated PFA-Nipals, that works with missing data without the need for deletion or imputation. This is achieved by considering an iterative nonlinear estimation of principal components by partial least squares, while the relevant features are selected through minibatch K-means clustering. The proposed method is successfully applied to select the relevant features of a robust health dataset with missing data, outperforming other UFS methods in terms of computational load and learning bias. Furthermore, the proposed method is capable of finding a consistent set of relevant features without biasing the explained variability, even under increasing missing data. Finally, it is expected that the proposed method could be used in several areas, such as machine learning and big data with applications in different areas of the medical and engineering sciences. en
dc.language.iso eng
dc.relation.ispartof vol. 11 Issue: no. 19 Pages:
dc.source Mathematics
dc.title PFA-Nipals : An Unsupervised Principal Feature Selection Based on Nonlinear Estimation by Iterative Partial Least Squares en
dc.type Artículo
dc.identifier.doi 10.3390/math11194154
dc.publisher.department Facultad de Ingeniería, Arquitectura y Diseño


Ficheros en el ítem

Ficheros Tamaño Formato Ver

No hay ficheros asociados a este ítem.

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem