Mostrar el registro sencillo del ítem
dc.contributor.author | González, Hernán A. | |
dc.contributor.author | Labrin, Oriana | |
dc.contributor.author | Miskovic, Olivera | |
dc.date.accessioned | 2024-09-26T00:47:53Z | |
dc.date.available | 2024-09-26T00:47:53Z | |
dc.date.issued | 2023-07 | |
dc.identifier.issn | 1029-8479 | |
dc.identifier.uri | https://repositorio.uss.cl/handle/uss/13572 | |
dc.description | Publisher Copyright: © 2023, The Author(s). | |
dc.description.abstract | We discuss the emergence of a new symmetry generator in a Hamiltonian realisation of four-dimensional gauge theories in the flat space foliated by retarded (advanced) time. It generates an asymptotic symmetry that acts on the asymptotic fields in a way different from the usual large gauge transformations. The improved canonical generators, corresponding to gauge and asymptotic symmetries, form a classical Kac-Moody charge algebra with a non-trivial central extension. In particular, we describe the case of electromagnetism, where the charge algebra is the U(1) current algebra with a level proportional to the coupling constant of the theory, κ = 4π 2/e 2. We construct bilinear generators yielding Virasoro algebras on the null boundary. We also provide a non-Abelian generalization of the previous symmetries by analysing the evolution of Yang-Mills theory in Bondi coordinates. | en |
dc.language.iso | eng | |
dc.relation.ispartof | vol. 2023 Issue: no. 6 Pages: | |
dc.source | Journal of High Energy Physics | |
dc.title | Kac-Moody symmetry in the light front of gauge theories | en |
dc.type | Artículo | |
dc.identifier.doi | 10.1007/JHEP06(2023)165 |
Ficheros | Tamaño | Formato | Ver |
---|---|---|---|
No hay ficheros asociados a este ítem. |