Universidad San Sebastián  
 

Repositorio Institucional Universidad San Sebastián

Búsqueda avanzada

Descubre información por...

 

Título

Ver títulos
 

Autor

Ver autores
 

Tipo

Ver tipos
 

Materia

Ver materias

Buscar documentos por...




Mostrar el registro sencillo del ítem

dc.contributor.author Alireza Davari, S.
dc.contributor.author Nekoukar, Vahab
dc.contributor.author Azadi, Shirin
dc.contributor.author Flores-Bahamonde, Freddy
dc.contributor.author Garcia, Cristian
dc.contributor.author Rodriguez, Jose
dc.date.accessioned 2024-09-26T00:48:13Z
dc.date.available 2024-09-26T00:48:13Z
dc.date.issued 2023
dc.identifier.issn 2644-1284
dc.identifier.uri https://repositorio.uss.cl/handle/uss/13592
dc.description Publisher Copyright: © 2023 The Authors. This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License. For more information, see.
dc.description.abstract Tuning the weighting factor is crucial to model predictive torque and flux control. A finite set of discrete weighting factors is utilized in this research to determine the optimum solution. The Pareto line optimization technique is implemented to prevent the occurrence of local optimum solutions. By conducting an accuracy analysis, the number of discrete weighting factors is optimized, and the number of iterations is reduced. The stator current distortion minimization criterion is used to obtain the ultimate global optimal solution from the Pareto line. This study compares the results of the proposed optimization method and the particle swarm optimization method based on experimental data from a 4 kW induction motor drive test bench. The proposed technique can achieve the global optimum weighting factor in a shorter computational duration while maintaining a slightly lower total harmonics distortion and torque ripple. en
dc.language.iso eng
dc.relation.ispartof vol. 4 Issue: Pages: 573-582
dc.source IEEE Open Journal of the Industrial Electronics Society
dc.title Discrete Optimization of Weighting Factor in Model Predictive Control of Induction Motor en
dc.type Artículo
dc.identifier.doi 10.1109/OJIES.2023.3333873
dc.publisher.department Facultad de Ingeniería, Arquitectura y Diseño


Ficheros en el ítem

Ficheros Tamaño Formato Ver

No hay ficheros asociados a este ítem.

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem