Universidad San Sebastián  
 

Repositorio Institucional Universidad San Sebastián

Búsqueda avanzada

Descubre información por...

 

Título

Ver títulos
 

Autor

Ver autores
 

Tipo

Ver tipos
 

Materia

Ver materias

Buscar documentos por...




Mostrar el registro sencillo del ítem

dc.contributor.author Herzog, Rubén
dc.contributor.author Morales, Arturo
dc.contributor.author Mora, Soraya
dc.contributor.author Araya, Joaquín
dc.contributor.author Escobar, María José
dc.contributor.author Palacios, Adrian G.
dc.contributor.author Cofré, Rodrigo
dc.date.accessioned 2024-09-26T00:48:50Z
dc.date.available 2024-09-26T00:48:50Z
dc.date.issued 2021-07
dc.identifier.issn 1932-6203
dc.identifier.uri https://repositorio.uss.cl/handle/uss/13638
dc.description Publisher Copyright: Copyright: © 2021 Herzog et al. This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
dc.description.abstract We propose a novel, scalable, and accurate method for detecting neuronal ensembles from a population of spiking neurons. Our approach offers a simple yet powerful tool to study ensemble activity. It relies on clustering synchronous population activity (population vectors), allows the participation of neurons in different ensembles, has few parameters to tune and is computationally efficient. To validate the performance and generality of our method, we generated synthetic data, where we found that our method accurately detects neuronal ensembles for a wide range of simulation parameters. We found that our method outperforms current alternative methodologies. We used spike trains of retinal ganglion cells obtained from multi-electrode array recordings under a simple ON-OFF light stimulus to test our method. We found a consistent stimuli-evoked ensemble activity intermingled with spontaneously active ensembles and irregular activity. Our results suggest that the early visual system activity could be organized in distinguishable functional ensembles. We provide a Graphic User Interface, which facilitates the use of our method by the scientific community. en
dc.language.iso eng
dc.relation.ispartof vol. 16 Issue: no. 7 July Pages:
dc.source Plos One
dc.title Scalable and accurate method for neuronal ensemble detection in spiking neural networks en
dc.type Artículo
dc.identifier.doi 10.1371/journal.pone.0251647
dc.publisher.department Facultad de Ingeniería, Arquitectura y Diseño


Ficheros en el ítem

Ficheros Tamaño Formato Ver

No hay ficheros asociados a este ítem.

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem