Universidad San Sebastián  
 

Repositorio Institucional Universidad San Sebastián

Búsqueda avanzada

Descubre información por...

 

Título

Ver títulos
 

Autor

Ver autores
 

Tipo

Ver tipos
 

Materia

Ver materias

Buscar documentos por...




Mostrar el registro sencillo del ítem

dc.contributor.author Bravo, Jennifer
dc.contributor.author Lizama, Carlos
dc.date.accessioned 2024-09-26T00:49:00Z
dc.date.available 2024-09-26T00:49:00Z
dc.date.issued 2022-10
dc.identifier.issn 2227-7390
dc.identifier.uri https://repositorio.uss.cl/handle/uss/13650
dc.description Publisher Copyright: © 2022 by the authors.
dc.description.abstract Given an injective closed linear operator A defined in a Banach space (Formula presented.) and writing (Formula presented.) the Caputo–Fabrizio fractional derivative of order (Formula presented.) we show that the unique solution of the abstract Cauchy problem (Formula presented.) where f is continuously differentiable, is given by the unique solution of the first order abstract Cauchy problem (Formula presented.) where the family of bounded linear operators (Formula presented.) constitutes a Yosida approximation of A and (Formula presented.) as (Formula presented.) Moreover, if (Formula presented.) and the spectrum of A is contained outside the closed disk of center and radius equal to (Formula presented.) then the solution of (Formula presented.) converges to zero as (Formula presented.) in the norm of X, provided f and (Formula presented.) have exponential decay. Finally, assuming a Lipchitz-type condition on (Formula presented.) (and its time-derivative) that depends on (Formula presented.) we prove the existence and uniqueness of mild solutions for the respective semilinear problem, for all initial conditions in the set (Formula presented.). en
dc.language.iso eng
dc.relation.ispartof vol. 10 Issue: no. 19 Pages:
dc.source Mathematics
dc.title The Abstract Cauchy Problem with Caputo–Fabrizio Fractional Derivative en
dc.type Artículo
dc.identifier.doi 10.3390/math10193540
dc.publisher.department Facultad de Educación


Ficheros en el ítem

Ficheros Tamaño Formato Ver

No hay ficheros asociados a este ítem.

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem