Universidad San Sebastián  
 

Repositorio Institucional Universidad San Sebastián

Búsqueda avanzada

Descubre información por...

 

Título

Ver títulos
 

Autor

Ver autores
 

Tipo

Ver tipos
 

Materia

Ver materias

Buscar documentos por...




Mostrar el registro sencillo del ítem

dc.contributor.author Pezoa, Jorge E.
dc.contributor.author Ramírez, Diego A.
dc.contributor.author Godoy, Cristofher A.
dc.contributor.author Saavedra, María F.
dc.contributor.author Restrepo, Silvia E.
dc.contributor.author Coelho-Caro, Pablo A.
dc.contributor.author Flores, Christopher A.
dc.contributor.author Pérez, Francisco G.
dc.contributor.author Torres, Sergio N.
dc.contributor.author Urbina, Mauricio A.
dc.date.accessioned 2024-09-26T00:49:23Z
dc.date.available 2024-09-26T00:49:23Z
dc.date.issued 2023-11-02
dc.identifier.issn 1424-8220
dc.identifier.uri https://repositorio.uss.cl/handle/uss/13676
dc.description.abstract Fishing has provided mankind with a protein-rich source of food and labor, allowing for the development of an important industry, which has led to the overexploitation of most targeted fish species. The sustainable management of these natural resources requires effective control of fish landings and, therefore, an accurate calculation of fishing quotas. This work proposes a deep learning-based spatial-spectral method to classify five pelagic species of interest for the Chilean fishing industry, including the targeted Engraulis ringens, Merluccius gayi, and Strangomera bentincki and non-targeted Normanichthtys crockeri and Stromateus stellatus fish species. This proof-of-concept method is composed of two channels of a convolutional neural network (CNN) architecture that processes the Red-Green-Blue (RGB) images and the visible and near-infrared (VIS-NIR) reflectance spectra of each species. The classification results of the CNN model achieved over 94% in all performance metrics, outperforming other state-of-the-art techniques. These results support the potential use of the proposed method to automatically monitor fish landings and, therefore, ensure compliance with the established fishing quotas. en
dc.language.iso eng
dc.relation.ispartof vol. 23 Issue: no. 21 Pages:
dc.source Sensors (Basel, Switzerland)
dc.title A Spatial-Spectral Classification Method Based on Deep Learning for Controlling Pelagic Fish Landings in Chile en
dc.type Artículo
dc.identifier.doi 10.3390/s23218909
dc.publisher.department Facultad de Ingeniería, Arquitectura y Diseño


Ficheros en el ítem

Ficheros Tamaño Formato Ver

No hay ficheros asociados a este ítem.

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem