Universidad San Sebastián  
 

Repositorio Institucional Universidad San Sebastián

Búsqueda avanzada

Descubre información por...

 

Título

Ver títulos
 

Autor

Ver autores
 

Tipo

Ver tipos
 

Materia

Ver materias

Buscar documentos por...




Mostrar el registro sencillo del ítem

dc.contributor.author Greco, Matias
dc.contributor.author Toro, Jorge
dc.contributor.author Hernandez, Carlos
dc.contributor.author Baier, Jorge A.
dc.date.accessioned 2024-09-26T00:49:51Z
dc.date.available 2024-09-26T00:49:51Z
dc.date.issued 2024
dc.identifier.issn 2169-3536
dc.identifier.uri https://repositorio.uss.cl/handle/uss/13708
dc.description Publisher Copyright: © 2013 IEEE.
dc.description.abstract Bounded suboptimal heuristic search is a family of search algorithms capable of solving hard combinatorial problems, returning suboptimal solutions within a given bound. Recent machine learning approaches have been shown to learn accurate heuristic functions. Learned heuristics, however, are slow to compute; concretely, given a single search state s and a learned heuristic h , evaluating h(s) is typically very slow relative to expansion time, since state-of-the-art learned heuristics are implemented as neural networks. However, by using a Graphics Processing Unit (GPU), it is possible to compute heuristics using batched computation. Existing approaches to batched heuristic computation are specific to satisficing search and have not studied the problem in the context of bounded-suboptimal search. In this paper, we present K-Focal Search, a bounded suboptimal search algorithm that in each iteration expands K states from the FOCAL list and computes the learned heuristic values of the successors using a GPU. We experiment over the 24-puzzle and Rubik's Cube using DeepCubeA, a very effective and inadmissible learned heuristic. Our results show that K-Focal Search benefits both from batched computation and from the diversity in the search introduced by its expansion strategy. Over standard Focal Search, K-Focal Search improves runtime by a factor of 6, expansions by up to three orders of magnitude, and finds better quality solutions, keeping the theoretical guarantees of Focal Search. en
dc.language.iso eng
dc.relation.ispartof vol. 12 Issue: Pages: 1599-1607
dc.source IEEE Access
dc.title K-Focal Search for Slow Learned Heuristics en
dc.type Artículo
dc.identifier.doi 10.1109/ACCESS.2023.3346898
dc.publisher.department Facultad de Ingeniería, Arquitectura y Diseño


Ficheros en el ítem

Ficheros Tamaño Formato Ver

No hay ficheros asociados a este ítem.

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem