Universidad San Sebastián  
 

Repositorio Institucional Universidad San Sebastián

Búsqueda avanzada

Descubre información por...

 

Título

Ver títulos
 

Autor

Ver autores
 

Tipo

Ver tipos
 

Materia

Ver materias

Buscar documentos por...




Mostrar el registro sencillo del ítem

dc.contributor.author Gutiérrez-Soto, Claudio
dc.contributor.author Galdames, Patricio
dc.contributor.author Navea, Daniel
dc.date.accessioned 2024-09-26T00:50:01Z
dc.date.available 2024-09-26T00:50:01Z
dc.date.issued 2023
dc.identifier.issn 0948-695X
dc.identifier.uri https://repositorio.uss.cl/handle/uss/13720
dc.description Publisher Copyright: © 2023, IICM. All rights reserved.
dc.description.abstract Social networks such as Twitter provide thousands of terabytes per day, which can be exploited to find relevant information. This relevant information is used to promote marketing strategies, analyze current political issues, and track market trends, to name a few examples. One instance of relevant information is finding cyclic behavior patterns (i.e., patterns that frequently repeat themselves over time) in the population. Because trending topics on Twitter change rapidly, efficient algorithms are required, especially when considering location and time (i.e., the specific location and time) during broadcasts. This article presents an efficient algorithm based on association rules to find cyclical patterns on Twitter, considering the inherent spatio-temporal attributes of data. Using a Hash Table enhances the efficiency of this algorithm, called HashCycle. Notably, HashCycle does not use minimum support and can detect patterns in a single run over a sequence. The processing times of HashCycle were compared to the Apriori (which is a well-known and widely used on diverse platforms) and Projection-based Partial Periodic Patterns (PPA) algorithms (which is one of the most efficient algorithms in terms of processing times). Empirical results from two spatio-temporal databases (a synthetic data set and one based on Twitter) show that HashCycle has more efficient processing times than two state-of-the-art algorithms: Apriori and PPA. en
dc.language.iso eng
dc.relation.ispartof vol. 29 Issue: no. 11 Pages: 1404-1421
dc.source Journal of Universal Computer Science
dc.title Efficiently Finding Cyclical Patterns on Twitter Considering the Inherent Spatio-temporal Attributes of Data en
dc.type Artículo
dc.identifier.doi 10.3897/jucs.112523
dc.publisher.department Facultad de Ingeniería, Arquitectura y Diseño


Ficheros en el ítem

Ficheros Tamaño Formato Ver

No hay ficheros asociados a este ítem.

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem