Universidad San Sebastián  
 

Repositorio Institucional Universidad San Sebastián

Búsqueda avanzada

Descubre información por...

 

Título

Ver títulos
 

Autor

Ver autores
 

Tipo

Ver tipos
 

Materia

Ver materias

Buscar documentos por...




Mostrar el registro sencillo del ítem

dc.contributor.author Aguilera, Cristhian A.
dc.contributor.author Figueroa-Flores, Carola
dc.contributor.author Aguilera, Cristhian
dc.contributor.author Navarrete, Cesar
dc.date.accessioned 2024-09-26T00:50:16Z
dc.date.available 2024-09-26T00:50:16Z
dc.date.issued 2024-01
dc.identifier.issn 2077-0472
dc.identifier.uri https://repositorio.uss.cl/handle/uss/13737
dc.description Publisher Copyright: © 2023 by the authors.
dc.description.abstract In blueberry farming, accurately assessing maturity is critical to efficient harvesting. Deep Learning solutions, which are increasingly popular in this area, often undergo evaluation through metrics like mean average precision (mAP). However, these metrics may only partially capture the actual performance of the models, especially in settings with limited resources like those in agricultural drones or robots. To address this, our study evaluates Deep Learning models, such as YOLOv7, RT-DETR, and Mask-RCNN, for detecting and classifying blueberries. We perform these evaluations on both powerful computers and embedded systems. Using Type-Influence Detector Error (TIDE) analysis, we closely examine the accuracy of these models. Our research reveals that partial occlusions commonly cause errors, and optimizing these models for embedded devices can increase their speed without losing precision. This work improves the understanding of object detection models for blueberry detection and maturity estimation. en
dc.language.iso eng
dc.relation.ispartof vol. 14 Issue: no. 1 Pages:
dc.source Agriculture (Switzerland)
dc.title Comprehensive Analysis of Model Errors in Blueberry Detection and Maturity Classification : Identifying Limitations and Proposing Future Improvements in Agricultural Monitoring en
dc.type Artículo
dc.identifier.doi 10.3390/agriculture14010018
dc.publisher.department Facultad de Ingeniería, Arquitectura y Diseño


Ficheros en el ítem

Ficheros Tamaño Formato Ver

No hay ficheros asociados a este ítem.

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem