Universidad San Sebastián  
 

Repositorio Institucional Universidad San Sebastián

Búsqueda avanzada

Descubre información por...

 

Título

Ver títulos
 

Autor

Ver autores
 

Tipo

Ver tipos
 

Materia

Ver materias

Buscar documentos por...




Mostrar el registro sencillo del ítem

dc.contributor.author Sarabia-Vallejos, Mauricio A.
dc.contributor.author De la Fuente, Scarleth Romero
dc.contributor.author Tapia, Pamela
dc.contributor.author Cohn-Inostroza, Nicolás A.
dc.contributor.author Estrada, Manuel
dc.contributor.author Ortiz-Puerta, David
dc.contributor.author Rodríguez-Hernández, Juan
dc.contributor.author González-Henríquez, Carmen M.
dc.date.accessioned 2024-09-26T00:50:54Z
dc.date.available 2024-09-26T00:50:54Z
dc.date.issued 2024-02
dc.identifier.issn 2073-4360
dc.identifier.other Mendeley: 3438ed0a-f72a-3315-80f6-f2c30b12dd27
dc.identifier.uri https://repositorio.uss.cl/handle/uss/13779
dc.description Publisher Copyright: © 2024 by the authors.
dc.description.abstract Patients with bone diseases often experience increased bone fragility. When bone injuries exceed the body’s natural healing capacity, they become significant obstacles. The global rise in the aging population and the escalating obesity pandemic are anticipated to lead to a notable increase in acute bone injuries in the coming years. Our research developed a novel DLP resin for 3D printing, utilizing poly(ethylene glycol diacrylate) (PEGDA) and various monomers through the PET-RAFT polymerization method. To enhance the performance of bone scaffolds, triply periodic minimal surfaces (TPMS) were incorporated into the printed structure, promoting porosity and pore interconnectivity without reducing the mechanical resistance of the printed piece. The gyroid TPMS structure was the one that showed the highest mechanical resistance (0.94 ± 0.117 and 1.66 ± 0.240 MPa) for both variants of resin composition. Additionally, bioactive particles were introduced to enhance the material’s biocompatibility, showcasing the potential for incorporating active compounds for specific applications. The inclusion of bioceramic particles produces an increase of 13% in bioactivity signal for osteogenic differentiation (alkaline phosphatase essay) compared to that of control resins. Our findings highlight the substantial improvement in printing precision and resolution achieved by including the photoabsorber, Rose Bengal, in the synthesized resin. This enhancement allows for creating intricately detailed and accurately defined 3D-printed parts. Furthermore, the TPMS gyroid structure significantly enhances the material’s mechanical resistance, while including bioactive compounds significantly boosts the polymeric resin’s biocompatibility and bioactivity (osteogenic differentiation). en
dc.language.iso eng
dc.relation.ispartof vol. 16 Issue: no. 4 Pages:
dc.source Polymers
dc.title Development of Biocompatible Digital Light Processing Resins for Additive Manufacturing Using Visible Light-Induced RAFT Polymerization en
dc.type Artículo
dc.identifier.doi 10.3390/polym16040472
dc.publisher.department Facultad de Ingeniería, Arquitectura y Diseño
dc.publisher.department Facultad de Ingeniería y Tecnología


Ficheros en el ítem

Ficheros Tamaño Formato Ver

No hay ficheros asociados a este ítem.

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem