Universidad San Sebastián  
 

Repositorio Institucional Universidad San Sebastián

Búsqueda avanzada

Descubre información por...

 

Título

Ver títulos
 

Autor

Ver autores
 

Tipo

Ver tipos
 

Materia

Ver materias

Buscar documentos por...




Mostrar el registro sencillo del ítem

dc.contributor.author Rodríguez-López, Lien
dc.contributor.author Alvarez, Denisse
dc.contributor.author Bustos Usta, David
dc.contributor.author Duran-Llacer, Iongel
dc.contributor.author Bravo Alvarez, Lisandra
dc.contributor.author Fagel, Nathalie
dc.contributor.author Bourrel, Luc
dc.contributor.author Frappart, Frederic
dc.contributor.author Urrutia, Roberto
dc.date.accessioned 2024-09-26T00:50:55Z
dc.date.available 2024-09-26T00:50:55Z
dc.date.issued 2024-02
dc.identifier.issn 2072-4292
dc.identifier.uri https://repositorio.uss.cl/handle/uss/13781
dc.description Publisher Copyright: © 2024 by the authors.
dc.description.abstract In this study, we employ in situ, meteorological, and remote sensing data to estimate chlorophyll-a concentration at different depths in a South American freshwater ecosystem, focusing specifically on a lake in southern Chile known as Lake Maihue. For our analysis, we explored four different scenarios using three deep learning and traditional statistical models. These scenarios involved using field data (Scenario 1), meteorological variables (Scenario 2), and satellite data (Scenarios 3.1 and 3.2) to predict chlorophyll-a levels in Lake Maihue at three different depths (0, 15, and 30 m). Our choice of models included SARIMAX, DGLM, and LSTM, all of which showed promising statistical performance in predicting chlorophyll-a concentrations in this lake. Validation metrics for these models indicated their effectiveness in predicting chlorophyll levels, which serve as valuable indicators of the presence of algae in the water body. The coefficient of determination values ranged from 0.30 to 0.98, with the DGLM model showing the most favorable statistics in all scenarios tested. It is worth noting that the LSTM model yielded comparatively lower metrics, mainly due to the limitations of the available training data. The models employed, which use traditional statistical and machine learning models and meteorological and remote sensing data, have great potential for application in lakes in Chile and the rest of the world with similar characteristics. In addition, these results constitute a fundamental resource for decision-makers involved in the protection and conservation of water resource quality. en
dc.language.iso eng
dc.relation.ispartof vol. 16 Issue: no. 4 Pages:
dc.source Remote Sensing
dc.title Chlorophyll-a Detection Algorithms at Different Depths Using In Situ, Meteorological, and Remote Sensing Data in a Chilean Lake en
dc.type Artículo
dc.identifier.doi 10.3390/rs16040647
dc.publisher.department Facultad de Ingeniería, Arquitectura y Diseño


Ficheros en el ítem

Ficheros Tamaño Formato Ver

No hay ficheros asociados a este ítem.

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem