Universidad San Sebastián  
 

Repositorio Institucional Universidad San Sebastián

Búsqueda avanzada

Descubre información por...

 

Título

Ver títulos
 

Autor

Ver autores
 

Tipo

Ver tipos
 

Materia

Ver materias

Buscar documentos por...




Mostrar el registro sencillo del ítem

dc.contributor.author Faik, Zainab
dc.contributor.author Zanker, Henri S.
dc.contributor.author Jung, Ramona B.
dc.contributor.author Werner, Hauke B.
dc.contributor.author Ruhwedel, Torben
dc.contributor.author Möbius, Wiebke
dc.contributor.author Bergles, Dwight E.
dc.contributor.author Barros, L. Felipe
dc.contributor.author Nave, Klaus Armin
dc.contributor.author Weber, Bruno
dc.contributor.author Saab, Aiman S.
dc.date.accessioned 2024-09-26T00:51:54Z
dc.date.available 2024-09-26T00:51:54Z
dc.date.issued 2024-03
dc.identifier.issn 1097-6256
dc.identifier.other Mendeley: d8bd178c-a84e-3f8a-a2bf-52a07a7acbd9
dc.identifier.uri https://repositorio.uss.cl/handle/uss/13849
dc.description Publisher Copyright: © The Author(s) 2024.
dc.description.abstract The integrity of myelinated axons relies on homeostatic support from oligodendrocytes (OLs). To determine how OLs detect axonal spiking and how rapid axon–OL metabolic coupling is regulated in the white matter, we studied activity-dependent calcium (Ca2+) and metabolite fluxes in the mouse optic nerve. We show that fast axonal spiking triggers Ca2+ signaling and glycolysis in OLs. OLs detect axonal activity through increases in extracellular potassium (K+) concentrations and activation of Kir4.1 channels, thereby regulating metabolite supply to axons. Both pharmacological inhibition and OL-specific inactivation of Kir4.1 reduce the activity-induced axonal lactate surge. Mice lacking oligodendroglial Kir4.1 exhibit lower resting lactate levels and altered glucose metabolism in axons. These early deficits in axonal energy metabolism are associated with late-onset axonopathy. Our findings reveal that OLs detect fast axonal spiking through K+ signaling, making acute metabolic coupling possible and adjusting the axon–OL metabolic unit to promote axonal health. en
dc.description.abstract The integrity of myelinated axons relies on homeostatic support from oligodendrocytes (OLs). To determine how OLs detect axonal spiking and how rapid axon–OL metabolic coupling is regulated in the white matter, we studied activity-dependent calcium (Ca2+) and metabolite fluxes in the mouse optic nerve. We show that fast axonal spiking triggers Ca2+ signaling and glycolysis in OLs. OLs detect axonal activity through increases in extracellular potassium (K+) concentrations and activation of Kir4.1 channels, thereby regulating metabolite supply to axons. Both pharmacological inhibition and OL-specific inactivation of Kir4.1 reduce the activity-induced axonal lactate surge. Mice lacking oligodendroglial Kir4.1 exhibit lower resting lactate levels and altered glucose metabolism in axons. These early deficits in axonal energy metabolism are associated with late-onset axonopathy. Our findings reveal that OLs detect fast axonal spiking through K+ signaling, making acute metabolic coupling possible and adjusting the axon–OL metabolic unit to promote axonal health. es
dc.language.iso eng
dc.relation.ispartof vol. 27 Issue: no. 3 Pages: 433-448
dc.source Nature Neuroscience
dc.title Oligodendrocyte–axon metabolic coupling is mediated by extracellular K+ and maintains axonal health en
dc.title.alternative El acoplamiento metabólico entre axones y oligodendrocitos es mediado por el K+ extracelular y mantiene la salud axonal es
dc.type Artículo
dc.identifier.doi 10.1038/s41593-023-01558-3
dc.publisher.department Facultad de Medicina y Ciencia


Ficheros en el ítem

Ficheros Tamaño Formato Ver

No hay ficheros asociados a este ítem.

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem