Universidad San Sebastián  
 

Repositorio Institucional Universidad San Sebastián

Búsqueda avanzada

Descubre información por...

 

Título

Ver títulos
 

Autor

Ver autores
 

Tipo

Ver tipos
 

Materia

Ver materias

Buscar documentos por...




Mostrar el registro sencillo del ítem

dc.contributor.author Vyshnavi, P.
dc.contributor.author Challagulla, S. P.
dc.contributor.author Adamu, Musa
dc.contributor.author Vicencio, Felipe
dc.contributor.author Jameel, Mohammed
dc.contributor.author Ibrahim, Yasser E.
dc.contributor.author Ahmed, Omar Shabbir
dc.date.accessioned 2024-09-26T00:51:55Z
dc.date.available 2024-09-26T00:51:55Z
dc.date.issued 2023-10
dc.identifier.issn 2076-3417
dc.identifier.uri https://repositorio.uss.cl/handle/uss/13850
dc.description Publisher Copyright: © 2023 by the authors.
dc.description.abstract Soft stories in buildings are well-known to present structural vulnerabilities during seismic events, and the failure of non-structural components (NSCs) has been evident in past earthquakes, along with structural damage. This study seeks to investigate how the presence of a soft story in a building affects the criteria for elastic floor acceleration. The soft story is assumed to be at the top, middle, and bottom levels of the structure. To comprehend the behavior of NSCs, the researchers analyze the floor response spectra (FRSs) and component acceleration amplification. Remarkably, the results reveal that the position of the soft story strongly influences the floor response spectra, with structures featuring a middle soft story showing the most significant amplification of component acceleration. In constructing the FRSs, the component dynamic amplification factors (CDAFs) play a vital role as they accurately illustrate how NSCs amplify floor vibrations. Consequently, the study delves into exploring machine learning (ML) models like artificial neural networks (ANNs) and random forest (RF) to map the intricate relationship between CDAFs, the dynamic characteristics of the building, and the behavior of NSCs. Upon comparison of the two models, the random forest model emerges as the superior method in predicting the CDAFs. en
dc.language.iso eng
dc.relation.ispartof vol. 13 Issue: no. 20 Pages:
dc.source Applied Sciences (Switzerland)
dc.title Utilizing Artificial Neural Networks and Random Forests to Forecast the Dynamic Amplification Factors of Non-Structural Components en
dc.type Artículo
dc.identifier.doi 10.3390/app132011329
dc.publisher.department Facultad de Ingeniería y Tecnología
dc.publisher.department Facultad de Ingeniería, Arquitectura y Diseño


Ficheros en el ítem

Ficheros Tamaño Formato Ver

No hay ficheros asociados a este ítem.

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem